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Abstract. We present a granular-hydrodynamic model that captures the essence of convection in a fully
vibrofluidized granular system. The steady temperature distribution is solved analytically. Numerical simu-
lation shows that the convection always develops through a supercritical bifurcation, with its energy about
5% of the random (heat) one. A comparison calculation is performed for a normal fluid. The convection
roll, or an active roll as we call it, has an angular velocity gradient from its interior to exterior. We conclude
that active rolls are universal.

PACS. 45.70.Mg Granular flow: mixing, segregation and stratification – 47.20.Bp Buoyancy-driven
instability – 47.27.Te Convection and heat transfer

In the study of fluid and vibrofluidized granular systems,
convection has attracted particular interest, because con-
vection can not only occur alone, but also simultaneously
with (or within) other phenomena (e.g. surface waves or
heaps in granular systems), and might even be the source
for wave and heap formation. It is well known that in a
normal fluid in a gravitational field, free convection can
occur if the externally applied vertical temperature gra-
dient is directed downwards and its magnitude exceeds a
certain value. The mechanism for this convection is buoy-
ancy due to thermal expansion. In vibrofluidized granular
systems, some physical mechanisms for convection have
been proposed. One is the friction of the grains with the
walls of the container for weakly excited systems [1], and
another is the buoyancy (or heat)-driven mechanism for
fully fluidized systems. Theoretical techniques utilized to
explain convection have mainly been the continuum hy-
drodynamic theory [2] and large scale molecular dynamics
simulations [3]. Owing to the similarity of convection in
fully fluidized granular systems and normal fluids, in this
paper we model the vibrated granular system as a “ther-
mal” granular fluid. Every grain is treated as a “molecule”
of granular fluid, they take part simultaneously in the
macroscopic flow motion (if there is convection) as well
as the microscopic random or “thermal” motion. The vi-
brated plate (as an energy source) supplies energy from
the bottom to the granular system through grain-grain
collisions. Because the collision between grains is inelastic,
the kinetic energy of the grains is partially lost and trans-
ferred to true heat energy of the system as it spreads from
the bottom to the top surface, and thus establishes a gra-
dient of random velocity (or “temperature”) from bottom
to top surface of the system. As the input energy reaches
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a critical value, similar to a normal fluid, convection will
occur in granular system.

Mathematically we model the vibrofluidized granular
system by a set of equations, the momentum equation,
the “heat” transfer equation, and the continuity equation,
similar to that describing the free convection in a normal
fluid [4]. In doing so we suppose that the granular system
is excited at high frequency (>30 Hz) and small amplitude
(a few particle diameters), therefore, the mean separation
between grains, s, and the diameter of grain, d, satisfy
s � d, and the granular system is assumed incompress-
ible. We denote the macroscopic flow velocity by u, and
the mean random (or “thermal”) velocity by v. The mo-
mentum equation is analogous to the Navier Stokes equa-
tion, and takes the form

∂u
∂t

+ (u · �)u = −� p

ρ
+ ν �2 u− βgT, (1)

where p is the pressure fluctuation, ρ the mean mass den-
sity of the granular layer, and g the acceleration due to
gravity. ν is named kinematic viscosity coefficient, and β
the thermal-expansion coefficient, T = mv2/2 (m is the
mass of the grain) represents the temperature of the sys-
tem. The heat transfer equation is

∂T

∂t
+u·�T = �·(χ�T )+

ν

2
∂ui

∂xk

(
∂ui

∂xk
+

∂uk

∂xi

)
−I, (2)

where χ is the “thermometric” diffusivity, and I the rate
of energy dissipation due to the inelasticity of grain-grain
collisions. In order to relate the pressure p, the energy
dissipation I, and the coefficients ν, β and χ to variable
v, it is needed to use some kinetic theory for the gran-
ular material, as in reference [5], but here we make use
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of the simple cell model [6], and obtain p = tdρv2/s,
I = γmv3/s ≡ γ1v

3, ν = qd2v/s ≡ q1v, β = 6tρ/mp0,
and χ = rd2v/s ≡ r1v, in which γ1 ≡ γm/s, q1 ≡ qd2/s
and r1 ≡ rd2/s, respectively, p0 is the averaged pressure,
and t, γ, q and r are the dimensionless constants. We will
see that the coefficients ν and χ play a more active role
here than they do in normal hydrodynamics. They depend
upon v. Therefore, equation (1) and equation (2) are cou-
pled not only through the term u and T , but also through
these coefficients. The continuity equation is

� · u = 0. (3)

The dimensionless form of equations (1–3) is obtained
in such a way that the magnitude of gravity acceleration,
g, the thickness of the granular layer, h, and the mass of
the grain, m, are unities, respectively. In a vibrofluidized
granular system in a gravitational field, the temperature
gradient is related not only to the boundary condition but
also to the inelastic collision between grains. Therefore we
need to know how this gradient distributes in space, and
under what temperature gradient convection will occur.
For this purpose, and for simplicity, we solve first the one-
dimensional problem of steady state with no macroscopic
flow (or convection) in a gravitational field. In dimension-
less form, the heat transfer equation (2) is reduced to [7]

d2v

dz2
+

1
z

dv

dz
− v = 0, (4)

where z = (1−y)/λ , in which λ = (r/γ)1/2d. The bound-
ary condition at the top surface (y = 1) is taken as

χ
d

dy
v2|y=1 = 0. (5)

This means that the energy flux vanishes at the top sur-
face. As to the boundary condition at the bottom of the
granular layer (y = 0), we consider it as follows: In our pre-
vious work [8], we used a model of a single sphere colliding
completely inelastically with a massive sinusoidally oscil-
lating plate to describe the motion of a layer of vibrated
granular material, and obtained the mean input power, P ,
by the plate for each grain as a function of acceleration of
the plate, Γ . Therefore we take the input power P as the
boundary condition at the boundary y = 0, i.e.,

χ
d

dy

(
1
2
v2

)
|y=0 = P. (6)

Because the energy flux at the top surface is zero, the
energy flux P must be balanced by the energy dissipation
due to the inelasticity of the grain-grain collision, and is
responsible for the random and convection motion of the
grains. The solution to equation (4) is a modified Bessel
function of zero order, I0(z) and K0(z).

v = AI0(z) + BK0(z). (7)

Here y → 1 corresponds to z → 0. As the function K0(z)
is singular here, B must be set to zero, and v is given by
I0(z) alone, i.e.

v = AI0(z). (8)
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Fig. 1. The analytical static temperature of the linear problem
for three values of P .

Inserting this into the boundary condition equation (6),
we have

A =
[
P/(χI0

dI0

dy
)|y=0

]1/2

. (9)

Figure 1 is the distribution of the steady static tempera-
ture according to the solution equation (8) for three dif-
ferent values of P , which is in qualitative agreement with
experiment [9,10].

In principle, in terms of the stability analysis we can
obtain the conditions under which convection will occur
as in reference [4]. This work is under way. Here we inves-
tigate the criteria for convection to occur by solving the
equations (1–3) numerically [11]. We shall restrict our-
selves to a two-dimensional box with lateral dimension 2,
and height 1. The gravity acceleration is in negative y di-
rection, all walls are assumed rigid and free-slip, or the
normal components of the velocity at all boundaries are
zero. The energy with mean power P inputs into the sys-
tem from the bottom of the box, the three other walls are
assumed to be adiabatic, i.e. the normal heat flux at these
walls is zero. The initial conditions are taken as follows:
u|t=0 = 0, T |t=0 = 0.003. We limit γ1, q1, β and r1 to be
order of 0.1, and vary the input power P . As P is below
a critical value, Pc ∼ 0.002 (P = 0 corresponds to Γ = 1,
therefore Pc corresponds to a critical driving acceleration
Γc > 1), no convection appears. This can be checked by
calculating the macroscopic flow kinetic energy of the sys-
tem (or convection energy), Ec =

∑
1
2u2, summing over

all finite-difference grid cells. The reason why we can do
this is that since � · u = 0, so if Ec = 0, then circulation∮

L
u ·dl = 0, and vice versa. In this way, we can avoid the

choice of the path for calculating the circulation
∮

L u · dl,
since often the number, the position and the orientation
of the rolls vary as the input power is increased. In all
cases of P < Pc, Ec ∼ 0. The temperature distribution is
similar to analytical results (as in Fig. 1) in y direction,
and is uniform in x direction. As P is increased to and be-
yond Pc, the steady state becomes unstable, Ec > 0, this
means convection occurs. Figure 2 shows the temperature
surface and convection patterns for P = 0.02. Compar-
ing with Figure 1, we can see that when the convection
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Fig. 2. (a) The temperature surface, (b) the convection roll,
for P = 0.02.

appears the temperature is no longer uniform in x direc-
tion. This can be explained as follows. In Figure 2(b), two
rolls are roughly symmetric about the vertical line bisect-
ing the box. In the layer adjacent to the side wall of the
box, falling grains are warmed up. When they reach the
middle part of the bottom, their temperature reaches a
maximum value. Then they move up along the bisection
line due to the buoyancy force. Upon reaching the top sur-
face, they continue to move from the center towards the
side wall. Meanwhile they are cooled down.

Convection always develops through a supercritical bi-
furcation. Figure 3(a) shows the convection energy of the
system, which can be fitted with Ec = 7.5 × 103(P −
0.02)0.58. Figure 3(b) shows the kinetic energy of the ran-
dom motion (or heat energy) of the system, Eh =

∑
1
2v2,

summing over all finite-difference grid cells, which can be
fitted with Eh = 1.6 × 105P 0.65. We can see that the ra-
tio of convective energy to heat energy is about 5%, the
same order of magnitude as in experiment [9]. This shows
that most of the injected energy is transferred to random
(heat) energy.

There have been many studies of convection in nor-
mal fluids. To show the more active role that ν and χ
play here than in normal fluids, we calculate the equa-
tions (1–3) with ν and χ being constant (normal fluid),
but other conditions remaining the same as in a granular
system. The result shows that the convection energy of
the system can be fitted with 7.2 × 103(P − 0.01), while
the heat energy is approximately the same as that of the
granular system (For comparison these two bifurcation di-
agrams are inserted in corresponding diagrams of Fig. 3,
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Fig. 3. (a) The convection energy of the system as a function
of input power. The dashed line is Ec = 7.5×103(P −0.02)0.58.
(b) The heat energy. The dashed line is Eh = 1.6 × 105P 0.65.
The inset is the corresponding energy for the case with both ν
and χ being constant.

respectively). It is well known that both ν and χ are the
factors against the convection. In vibrofluidized granular
systems, as P is very small, both ν and χ are smaller than
that of a normal fluid, favorable to the occurrence of con-
vection. As P (and then v) is increased, both ν and χ are
increased, and they become increasingly unfavorable for
convection to occur. In normal fluid these coefficients are
independent of v, P must reach some critical value, buoy-
ancy can overcome viscosity, and convection can occur.

To eliminate completely the effect of lateral walls on
the onset of convection, we use periodic lateral bound-
ary conditions, and fix the conditions at the bottom and
top as in the above calculation. Convection is still ob-
served, sometimes with very slow motion along the lateral
direction, even though there is zero total horizontal initial
momentum, and vertical boundary conditions do not af-
fect the horizontal moment of the system. Figure 4 is an
example of the convection pattern under periodic lateral
condition. The periodic structure in the horizontal direc-
tion can be observed clearly.

The angular velocity, Ω, is a typical characteristic of
the convection roll. We roughly calculate the mean angular
velocity of the convection roll by

Ω =

∮
L

u · dl
2S

. (10)
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Fig. 4. The convection pattern for periodic lateral boundary
condition and for P = 0.16.

where L is some closed contour centered at the center of
the convection roll, and S is the region encircled by L.
We perform the line integral by taking the sum

∑
u · �l

along the contour L. In this way we calculate Ω for sev-
eral concentric contours and for several different values of
P . The results are shown in Figure 5. Figure 5(a) shows
that Ω decreases from the interior to the exterior of the
roll. We call this roll an active roll, as if some momen-
tum is acting along its axis, resulting in the formation of
the gradient in Ω. Similar phenomena have been observed
numerically in normal fluids as well as experimentally in
both normal fluids and vibrofluidized granular systems.
We conclude that active rolls are universal. Figure 5(b)
shows the variation of Ω as P is increased for three con-
centric closed contours. We can see that Ω increases more
slowly in outer than in inner layer as P is increased. This
is in qualitative agreement with experiment [10].

In summary, the granular-hydrodynamics we present
reveal the properties of thermal convection in vibroflu-
idized granular systems. We observe some universal phe-
nomena of convection in both fluid and vibrofluidized
granular system. The granular-hydrodynamics provides
a proper approach to systematic investigation of related
phenomena in granular systems.
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